关于锂动力电池模组温度采集方法,值得你学习

你知道锂动力电池模组温度采集方法吗?锂动力电池在不同低温下的放电容量曲线如图1所示,与室温20℃相比,低温-20℃下容量衰减已经比较明显,到-30℃是容量损失更多,-40℃下容量连一半都不到了。

从电化学角度分析,溶液电阻、SEI膜电阻在整个温度范围内变化不大,对锂动力电池低温性能的影响较小;电荷传递电阻随温度的降低而显著增加,且在整个温度范围内随温度的变化都明显大于溶液电阻和SEI膜电阻。这是因为随着温度的降低,电解液的离子电导率随之降低,SEI膜电阻和电化学反应电阻随之增大,导致低温下欧姆极化、浓差极化和电化学极化均增大,在锂动力电池的放电曲线上就表现为平均电压和放电容量均随着温度降低而降低。

锂动力电池在低温充电过程中的欧姆极化、浓差极化和电化学极化将加大,导致金属锂沉积,使电解液分解,最终导致电极表面SEI膜增厚、SEI膜电阻增加,在放电曲线上表现为放电平台和放电容量降低。锂动力电池在低温条件下,化学反应活性降低,同时锂离子迁移变慢,在负极表面的锂离子还没有嵌入到负极中已经先还原成金属锂,并在负极表面沉淀析出形成锂枝晶,这容易刺穿隔膜造成电池内短路,进而损坏电池,造成安全事故。

(2)锂动力电池高温特性

锂动力电池在120℃高温下,锂动力电池的部分正极粘结剂PVdF将从Part1区域迁移到正极表面,造成Part1区域的粘结剂含量下降,即活性材料中粘结剂的缺失,导致电化学反应的能力下降。在Part2区域,因是正极的主体,粘结剂含量正常,高温影响不大,活性材料可以正常进行反应。

锂动力电池在85℃下循环,锂动力电池的负极表面出现固体电解质,负极表面被新生成的固体电解质覆盖。当温度上升在120℃时,生成了更多的固体电解质,负极表面被更多的固体电解质覆盖,消耗了更多的活性锂离子,造成锂动力电池容量的下降。

2.锂动力电池模组温度采集方法

在设计锂动力电池模组温度采集点时,采用的温度采集的方法有:

1)直接采集电芯温度,通常是把NTC热敏电阻布置在锂动力电池模组电芯表面。在锂动力电池模组电芯的特性比较均匀时,NTC热敏电阻在锂动力电池模组电芯表面上布置时,可以采取粘贴方法。

2)间接通集电芯温度,比较典型的办法是在锂动力电池模组的两个端板处,在锂动力电池模组的端板上嵌入NTC热敏电阻,这样能够准确的感知头尾两片动力电池电芯的温度,根据采集头尾两片动力电池电芯的温度推算出整个锂动力电池模组电芯的温度。

3)采集动力电池电芯互联板上端的温度,即把NTC热敏电阻嵌入到动力电池电芯的内部互联板里面,开准确的感知动力电池电芯的最高温度。

4)采集锂动力电池模组母线温度,在锂动力电池模组母线上设有凹槽,温度传感器固定于所述凹槽中,凹槽内设有用于固定温度传感器的固定胶。

5)采集锂动力电池模组盖板表面的温度,将NTC热敏电阻直接粘贴在锂动力电池模组盖板上。

在NTC热敏电阻与动力电池母线排、电芯互联板连接或与锂动力电池模组电芯表面、盖板表面上粘合时,需要考虑操作工艺对NTC热敏电阻的影响。在固定过程中若操作不当,可能会造成NTC热敏电阻断线、短路或引线涂层断裂。因NTC热敏电阻内部的基材陶瓷属于易碎材料,在连接或粘贴的过程处理中不能施加过大压力或冲击,否则会导致引线与元件之间的接合部断开,或导致元件破裂。在连接或粘贴时还需考虑NTC热敏电阻在整个温度范围内不同材料的膨胀系数,否则产生内部应力损坏NTC热敏电阻本身。以上就是锂动力电池模组温度采集方法解析,希望能给大家帮助。

版权声明:aysz01 发表于 2024-05-09 2:42:52。
转载请注明:关于锂动力电池模组温度采集方法,值得你学习 | 电工学习网

暂无评论

暂无评论...